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Exact Solitary Wave Solutions to a Class of 
Generalized Odd-Order KdV Equations 

Z. J. Yang 1'2 

Received July 7, 1994 

Using a proper ansatz, we have obtained a series of exact solitary wave solutions 
to a class of generalized odd-order KdV equations. 

The generalized odd-order KdV equation of the form 

U t Jr" ~ll, l~ q- ~ ~nU(2n--l)x = 0 (1) 
n=2 

where [3i (i = 1, 2, 3 . . . . .  m) are real numbers, has been widely used in the 
physical sciences (Johnson, 1980; Drazin and Johnson, 1989; Sachdev, 1987; 
Newell and Moloney, 1992; Kakutari and Ono, 1969; Kawahara, 1972; Yoshi- 
mura and Watanabe, 1982; Dai, 1982; Hereman e t  a l . ,  1986; Hereman and 
Takaoka, 1990; Hooper and Grimshaw, 1988; Ma, 1993). Looking for travel- 
ing (and/or solitary) wave solutions to this equation has been an important 
topic for several decades. By introducing an ansatz equation, we have obtained 
a new class of solitary wave solutions to this KdV equation. These results 
and examples of  possible applications are presented in this paper. 

For the traveling wave solution to the above KdV equation the vari- 
able transformation 

= x - c t  (2) 

where c is the speed of the traveling w a v e ,  may be used. Thus, equation (1) 
is transformed to 

--CU' + [~l/get/~/' "-1" ~ ~n/~ (2n-l) = 0 (3) 
n=2 
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Let us consider the following ansatz (Yang, 1994): 

[(u)l du = u' = - vbu 1 - 
d~ 

1/2 

(4) 

where v, a, and b are real numbers, and v > 0. Through integration, we 
obtain the solution as 

u(~) = a sechV(b~ + Co) (5) 

Thus, we have 

[ ~(ulV] U" = vb2u  v - ( v  + 1 

-~ [ ( f ]  = [1-(u/a)a/~]  uz v - ( v +  1) u' 

[ (:)l u " = b  2 v 2 -  ( v +  1 ) ( v + 2 )  u' 

- -  1) 3 -- 2(V + 1)(2 + 2V + V 2) U(4) = [ 1 -- (u/a) 2/~] 1/2 

/,,\41~l 
+ (v + 1)(v + 2)(v + 3)~a ) Ju '  

[ (:i '~ u ( 5 ) = b  4 v 4 - 2 ( v +  1 ) ( v + 2 ) ( 2 + 2 v + v  z) 

[u.\4/"l 

u(6)= [1 - (ula)2/~] 1/2 v 5 -  (v + 1)(4 + 2v + v2)(4 + 6v + 3v )  a 

/ ~4/,, 

/ \6/v-I 

- (v + l ) ( v  + 2)(v + 3 ) (v+ 4)(v  + 5 ) l u  ) Ju '  
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U (7) = b 6 1) 6 - -  (1) "{- 1)(1) + 2)(4 + 21) + 1)2)(4 4- 6v + 31) ) a 

/ \air 
+ (1) + 1)(. + 2)(1) + 3)(1) + 4)(20 + 121) + 31)2) a ) 

[ 11 ~61v'] 
- (1)  + 1)(v + 2)(v + 3)(v + 4)(v + 5)(1) + 6)~a ) ]u' 

t 

It is easy to see that all high odd-order  (>--3) derivat ives of  u can be expressed 
as a product  o f  u'  and a (pseudo-)polynomial  of  u 2/", i.e., in the form 

u (2"-1) = f . (u )u ' ,  n = 1, 2, 3 . . . . .  m (6) 

wherefn(U) are the (n - 1)th-order (pseudo-)polynomials  o f  u z/". Substituting 
these expressions into equation (3), we have  the equality 

- c  + [3~u" + ~ [3.f.(u) - 0 (7) 
n = 2  

Setting all o f  the coefficients o f  the u 2/~ polynomials  to zero, we can determine 
the values o f  a, b, and v (as well  as c for n --> 3), and the relationships 
be tween the [3i (i = 1, 2, 3 . . . . .  m) for n --  4, under which equation (1) 
has the solitary wave  solution described by  equat ion (5). We now consider  
some possible  examples  of  these results for different values of  m. 

Example  1. For m = 2, equation (7) can be written explicitly as 

[ [31 uc~ --  C + [32 b2 1)2 - -  (1) _{_ 1)(1) + 2) - 0 (8) 

Let  v = 2/c~; then we have the sys tem of  equations 

C - -  [32b21)  2 = 0 

[31 - [32b2(1) + 1)(1) + 2)a - "  = 0 

The  solutions to these equations are 

a =  [c(c~+1)(c~+2)1'/~213, 

b =  -~- (COt'2 '~ 112 
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Example  2. For m = 3, equation (7) can be expressed explicitly as 

[ (:;] [~1 ua  --  C + ~2b 2 1) 2 - (v  + 1)(v  + 2) 

E -f" [33 b4 1/4 - -  2(v + 1)(v + 2)(2 + 2v + 1. '2) 

+ (v + 1)(v + 2)(v + 3)(v + 4) -= 0 

Let v = 4/or; then we have the system of  equations 

c - ~2b2v 2 - ~3b4v 4 = 0 

132 q- 2~3b2( 2 q- 2v + v 2) = 0 

[~1 q- [~3b4( v + 1)(v + 2)(v + 3)(v + 4)a -'~ = 0 

The solutions are 

[ -132(cx + 1)(cx + 2)(3ot + 4)(et + 4 ) [  1/~ 

a = - 2131133(8 "{'- 4 ( /  -'1" Or2) 2 / 

- 4133(8 + 4 a  + ot2)J 

-4132(ot + 2) 2 

133(8 -t'- 4et + 0/.2) 2 

Example  3. For m = 4, equation (7) has the form 

[3i uet - -  6' q" [32 b2 1) 2 --  (11 -']'- 1)(V + 2) 

[ (u; -t- 133 b4 1. '4 - -  2(1.' "~ 1)(V -t- 2)(2 + 2v + v 2) 

2 u_ + 134b 6 v 6 - (1) + 1)(v q- 2)(4 + 2v + v2)(4 + 6v + 3v ) a 

(9) 
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I \ 4 I v  

+ (v + 1)(v + 2)(v + 3)(v + 4)(20 + 12v + 3v ) a 

1 \61V"l 
- (v + l)(v + 2)(v + 3)(v + 4)(v + 5)(v + 6)Iu) ] = 0  (10) 

Let  v = 6/a;  then we have the system of  equations; 

E - -  132b21) 2 - -  133b41) 4 - 134b61) 6 = 0 

132 + 2133b2( 2 + 21) + p 2) + 134b4(4 + 21) + 1)2)(4 + 61) + 31) 2 ) = 0 

133 + 134bZ( 20 + 12v + 3v 2) = 0 

131 - 134b6( v + 1)(v + 2)(v + 3)(v + 4)(v + 5)(v + 6)a -~ = 0 

Under  the condition 

132134(27 + 18a + 5ae) 2 = [32(243 + 324a  + 162a z + 36a  3 + 4 a  4) 

we obtain the solution as 

[ -913](et  + 1)(a + 2)(~ + 3)(2~ + 3)(5~ + 6)(~ + 6 ) ]  1'~ 

a = 813113~(27 + 18a + 5a2) 3 

b = + [ ],,2 
- 4134(27 + 18a + 5a2)J 

-9133(9 + 9et + 2a2) z 
C= 

[342(27 + 18a + 5ot2) 3 

This is a general solution to the seventh-order KdV equation for an arbitrary 
real number  a [the result for  a = 1 was recently obtained by Ma (1993)]. 

Now, we present the "general"  solutions to equation (3) for any given 
m = integer. Letting v = 2(m - 1)la, through some calculation we obtain 
the equation system 

C -  ~ 13nb2(n-l)v 2(n-l) = 0 
n=2  

~13nb2(n- 2)~3n_ 2(1)) = 0 
n=2  

~13,bZ(n-3)~n_3(v ) = 0 
n=3  
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• ~nb2(n-4)'qn_4(p ) = 0 
n=4 

~I [3nb2(n-5)~n-5(v) = 0 
n=5 

[31 -- [3rob 2(m-l)a-a 
2(m- 1) 

FI 0 , +  n) = o 
n=l  

where the {8}, {6 }, {'q}, and {r }, etc., are defined by the recursion formulas 

80  = ~o = "q0 = ~o . . . . .  1 

~n+l(1 )) = "1) 2(n+l) -}- (V "l- 2)28n,  

~n+l(p)  = ~n+l "~- (V "q- 4)2~n, 

"l]n+l(V) ~" ~n+l "q- (P q'- 6)2"q., 
~n+l(v)  = "qn+l "~- (P "~ 8)2~n, 

I 

n = 0 , 1 , 2  . . . . .  m - 1  

n = 0 , 1 , 2  . . . . .  m - 2  

n = 0 , 1 , 2  . . . . .  m - 3  

n = 0 , 1 , 2  . . . . .  m - 4  
. (11) 

If c~ and { [3 } are given, it is straightforward to find the nonzero (nontrivial) 
solutions to this equation system. 

The same procedure can in principle be used to solve the more gen- 
eral equation 

14 t "~- ~ ~tn(l~)U(2n_l) x ~--* 0 (12) 
n=l  

where ~i(u)  (i = 1, 2, 3 . . . . .  m)  are polynomials of u. The counterpart 
equality of equation (7) is in the form 

- c  + ~ ,  yn(U)fn(U) = 0 (13) 
n=l  

where f/(u) (i = 1, 2, 3 . . . . .  m) are defined by equation (6). Once ~i(u)  
(i = 1, 2, 3 . . . . .  m) are given, the solutions, in the form of equation (5), 
can be straightforwardly obtained. 

With a series of straightforward algebraic calculations, it is possible to 
obtain solutions to higher-order generalized KdV equations. Furthermore, the 
one-dimensional solution can be generalized to two- and higher-dimensional 
solutions by a standard technique (Drazin and Johnson, 1989). 

In summary, using a proper ansatz equation, we have obtained a class of 
the exact solitary wave solutions to the generalized odd-order KdV equations. 
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